Syllabus Concepts in Machine Learning- CST 383 KTU

Module-1 (Overview of machine learning) 

Machine learning paradigms-supervised, semi-supervised, unsupervised, reinforcement learning. Basics of parameter estimation - maximum likelihood estimation(MLE) and maximum a posteriori estimation(MAP). Introduction to Bayesian formulation.

Module-2 (Supervised Learning)

Regression - Linear regression with one variable, Linear regression with multiple variables, solution using gradient descent algorithm and matrix method, basic idea of overfitting in regression. Linear Methods for Classification- Logistic regression, Perceptron, Naive Bayes, Decision tree algorithm ID3.

Module-3 (Neural Networks (NN) and Support Vector Machines (SVM)) 

NN - Multilayer feed forward network, Activation functions (Sigmoid, ReLU, Tanh), Backpropagation algorithm.

SVM - Introduction, Maximum Margin Classification, Mathematics behind Maximum Margin Classification, Maximum Margin linear separators, soft margin SVM classifier, non-linear SVM, Kernels for learning non-linear functions, polynomial kernel, Radial Basis Function(RBF).

Module-4 (Unsupervised Learning) 

Clustering - Similarity measures, Hierarchical Agglomerative Clustering, K-means partitional clustering, Expectation maximization (EM) for soft clustering. Dimensionality reduction – Principal Component Analysis, factor Analysis, Multidimensional scaling, Linear Discriminant Analysis.

Module-5 (Classification Assessment) 

Classification Performance measures - Precision, Recall, Accuracy, F-Measure, Receiver Operating Characteristic Curve(ROC), Area Under Curve(AUC. Bootstrapping, Cross Validation, Ensemble methods, Bias-Variance decomposition. Case Study: Develop a classifier for face detection.

Text Book

1. Ethem Alpaydin, Introduction to Machine Learning, 2nd edition, MIT Press 2010.
2. Mohammed J. Zaki and Wagner Meira, Data Mining and Analysis: Fundamental Concepts and Algorithms, Cambridge University Press, First South Asia edition,2016.
3. Jake VanderPlas, Python Data Science Handbook, O'Reilly Media, 2016
4. Tom Mitchell, Machine Learning, McGraw-Hill, 1997.

Reference Books

1. Christopher Bishop. Neural Networks for Pattern Recognition, Oxford University Press, 1995.
2. Kevin P. Murphy. Machine Learning: A Probabilistic Perspective, MIT Press 2012.
3. Trevor Hastie, Robert Tibshirani, Jerome Friedman, The Elements Of Statistical Learning, Second edition Springer 2007.
4. P. Langley, Elements of Machine Learning, Morgan Kaufmann, 1995.
5. Richert and Coelho, Building Machine Learning Systems with Python.
6. Davy Cielen, Arno DB Meysman and Mohamed Ali. Introducing Data Science: Big Data, Machine Learning, and More, Using Python Tools, Dreamtech Press 2016.

Comments

Popular posts from this blog

Concepts in Machine Learning- CST 383 KTU Minor Notes- Dr Binu V P

Overview of Machine Learning