Module-1 (Overview of machine learning) Machine learning paradigms-supervised, semi-supervised, unsupervised, reinforcement learning. Basics of parameter estimation - maximum likelihood estimation(MLE) and maximum a posteriori estimation(MAP). Introduction to Bayesian formulation. Module-2 (Supervised Learning) Regression - Linear regression with one variable, Linear regression with multiple variables, solution using gradient descent algorithm and matrix method, basic idea of overfitting in regression. Linear Methods for Classification- Logistic regression, Perceptron, Naive Bayes, Decision tree algorithm ID3. Module-3 (Neural Networks (NN) and Support Vector Machines (SVM)) NN - Multilayer feed forward network, Activation functions (Sigmoid, ReLU, Tanh), Backpropagation algorithm. SVM - Introduction, Maximum Margin Classification, Mathematics behind Maximum Margin Classification, Maximum Margin linear separators, soft margin SVM classifier, non-linear SVM, Kernels for learn
Comments
Post a Comment